3.108 \(\int \sec (c+d x) \sqrt{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=40 \[ \frac{\sqrt{2} \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \sin (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{d} \]

[Out]

(Sqrt[2]*Sqrt[a]*ArcTanh[Sqrt[a + a*Sin[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0604097, antiderivative size = 40, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2667, 63, 206} \[ \frac{\sqrt{2} \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \sin (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(Sqrt[2]*Sqrt[a]*ArcTanh[Sqrt[a + a*Sin[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sec (c+d x) \sqrt{a+a \sin (c+d x)} \, dx &=\frac{a \operatorname{Subst}\left (\int \frac{1}{(a-x) \sqrt{a+x}} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+a \sin (c+d x)}\right )}{d}\\ &=\frac{\sqrt{2} \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+a \sin (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}\\ \end{align*}

Mathematica [C]  time = 0.102338, size = 95, normalized size = 2.38 \[ -\frac{(2-2 i) \sqrt [4]{-1} \sqrt{a (\sin (c+d x)+1)} \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \sec \left (\frac{d x}{4}\right ) \left (\sin \left (\frac{1}{4} (2 c+d x)\right )+\cos \left (\frac{1}{4} (2 c+d x)\right )\right )\right )}{d \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

((-2 + 2*I)*(-1)^(1/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*Sec[(d*x)/4]*(Cos[(2*c + d*x)/4] + Sin[(2*c + d*x)/4])]*
Sqrt[a*(1 + Sin[c + d*x])])/(d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))

________________________________________________________________________________________

Maple [A]  time = 0.052, size = 32, normalized size = 0.8 \begin{align*}{\frac{\sqrt{2}}{d}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a+a\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{a}}}} \right ) \sqrt{a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+a*sin(d*x+c))^(1/2),x)

[Out]

arctanh(1/2*(a+a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2)*a^(1/2)/d

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.72538, size = 258, normalized size = 6.45 \begin{align*} \left [\frac{\sqrt{2} \sqrt{a} \log \left (-\frac{a \sin \left (d x + c\right ) + 2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a} + 3 \, a}{\sin \left (d x + c\right ) - 1}\right )}{2 \, d}, -\frac{\sqrt{2} \sqrt{-a} \arctan \left (\frac{\sqrt{2} \sqrt{-a}}{\sqrt{a \sin \left (d x + c\right ) + a}}\right )}{d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*sqrt(a)*log(-(a*sin(d*x + c) + 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a) + 3*a)/(sin(d*x + c) -
1))/d, -sqrt(2)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)/sqrt(a*sin(d*x + c) + a))/d]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\sin{\left (c + d x \right )} + 1\right )} \sec{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))*sec(c + d*x), x)

________________________________________________________________________________________

Giac [B]  time = 1.36625, size = 167, normalized size = 4.18 \begin{align*} -\frac{2 \,{\left (\frac{\sqrt{2} a \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} - \sqrt{a}\right )}}{2 \, \sqrt{-a}}\right ) \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{\sqrt{-a}} - \frac{\sqrt{2} a \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \sqrt{a} + 2 \, \sqrt{a}\right )}}{2 \, \sqrt{-a}}\right ) \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{\sqrt{-a}}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-2*(sqrt(2)*a*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) - sqrt(a)
)/sqrt(-a))*sgn(tan(1/2*d*x + 1/2*c) + 1)/sqrt(-a) - sqrt(2)*a*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(a) + 2*sqrt(a)
)/sqrt(-a))*sgn(tan(1/2*d*x + 1/2*c) + 1)/sqrt(-a))/d